References
References
[1] K. G. Salim, S. M. K. Al-alak, and M. J. Jawad, “Improved image security in internet of thing (IoT) using multiple key AES,” Baghdad Sci. J., vol. 18, no. 2, pp. 0417–0417, 2021.
[2] M. N. Halgamuge and D. Niyato, “Adaptive edge security framework for dynamic IoT security policies in diverse environments,” Comput. Secur., vol. 148, p. 104128, Jan. 2025, doi: 10.1016/j.cose.2024.104128.
[3] Gunjan, S. Agarwal, D. Rai, and S. Talreja, “Applications of IoT in Smart Homes and Cities,” in IoT Based Smart Applications, N. Sindhwani, R. Anand, M. Niranjanamurthy, D. Chander Verma, and E. B. Valentina, Eds., in EAI/Springer Innovations in Communication and Computing. , Cham: Springer International Publishing, 2023, pp. 55–70. doi: 10.1007/978-3-031-04524-0_4.
[4] V. Gugueoth, S. Safavat, S. Shetty, and D. Rawat, “A review of IoT security and privacy using decentralized blockchain techniques,” Comput. Sci. Rev., vol. 50, p. 100585, Nov. 2023, doi: 10.1016/j.cosrev.2023.100585.
[5] G.-C. Lee, J.-H. Li, and Z.-Y. Li, “A Wasserstein Generative Adversarial Network–Gradient Penalty-Based Model with Imbalanced Data Enhancement for Network Intrusion Detection,” Appl. Sci., vol. 13, no. 14, p. 8132, Jul. 2023, doi: 10.3390/app13148132.
[6] M. Kaur et al., “EGCrypto: A Low-Complexity Elliptic Galois Cryptography Model for Secure Data Transmission in IoT,” IEEE Access, vol. 11, pp. 90739–90748, 2023, doi: 10.1109/ACCESS.2023.3305271.
[7] M. G. Samaila, M. Neto, D. A. B. Fernandes, M. M. Freire, and P. R. M. Inácio, “Challenges of securing Internet of Things devices: A survey,” Secur. Priv., vol. 1, no. 2, p. e20, Mar. 2018, doi: 10.1002/spy2.20.
[8] “Fractal resonator based frequency Reconfigurable Antenna with varying capacitive effect for wireless applications,” Inf. MIDEM - J. Microelectron. Electron. Compon. Mater., vol. 51, no. 3, Dec. 2024, doi: 10.33180/InfMIDEM2025.104.
[9] G. Lackner, “A Comparison of Security in Wireless Network Standards with a Focus on Bluetooth, WiFi and WiMAX”.
[10] H. El-Sofany, S. A. El-Seoud, O. H. Karam, and B. Bouallegue, “Using machine learning algorithms to enhance IoT system security,” Sci. Rep., vol. 14, no. 1, p. 12077, May 2024, doi: 10.1038/s41598-024-62861-y.
[11] A. Shafique, A. Mehmood, M. Alawida, M. Elhadef, and M. U. Rehman, “A fusion of machine learning and cryptography for fast data encryption through the encoding of high and moderate plaintext information blocks,” Multimed. Tools Appl., vol. 84, no. 8, pp. 5349–5375, Apr. 2024, doi: 10.1007/s11042-024-18959-6.
[12] S. S. Chaeikar, M. Alizadeh, M. H. Tadayon, and A. Jolfaei, “An intelligent cryptographic key management model for secure communications in distributed industrial intelligent systems,” Int. J. Intell. Syst., vol. 37, no. 12, pp. 10158–10171, Dec. 2022, doi: 10.1002/int.22435.
[13] A. Arab, M. J. Rostami, and B. Ghavami, “An image encryption method based on chaos system and AES algorithm,” J. Supercomput., vol. 75, no. 10, pp. 6663–6682, Oct. 2019, doi: 10.1007/s11227-019-02878-7.
[14] A. BashirAbugharsa, A. Samad Bin Hasan Basari, and H. Almangush, “A New Image Encryption Approach using the Integration of a Shifting Technique and the AES Algorithm,” Int. J. Comput. Appl., vol. 42, no. 9, pp. 36–45, Mar. 2012, doi: 10.5120/5723-7785.
[15] Y. Jha, K. Kaur, and C. Pradhan, “Improving image encryption using two-dimensional logistic map and AES,” in 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, Tamilnadu, India: IEEE, Apr. 2016, pp. 0177–0180. doi: 10.1109/ICCSP.2016.7754116.
[16] M. S. Q. Khizrai and S. T. Bodkhe, “Image Encryption using Different Techniques for High Security Transmission over a Network,” vol. 2, no. 4, 2014.
[17] A. H. Mohsen and S. H. Shaker, “Images encryption using symmetric encryption algorithm based on random keys generator,” vol. 01, no. 08, 2016.
[18] S. Mohammed, S. M. K. Al-Alak, and H. A. Lafta, “ECC and AES Based Hybrid Security Protocol for Wireless Sensor Networks”.
[19] S. N. Hussein and S. M. Al-Alak, “Secret Keys Extraction Using Light Weight Schemes for Data Ciphering,” J. Phys. Conf. Ser., vol. 1999, no. 1, p. 012114, Sep. 2021, doi: 10.1088/1742-6596/1999/1/012114.
[20] P. Ji, H. Ma, Q. Ma, and X. Chen, “A Novel Method to Generate Pseudo-Random Sequence based on GAN”.
[21] S. Park, K. Kim, K. Kim, and C. Nam, “Dynamical Pseudo-Random Number Generator Using Reinforcement Learning,” Appl. Sci., vol. 12, no. 7, p. 3377, Mar. 2022, doi: 10.3390/app12073377.
[22] Y. Ding, F. Tan, Z. Qin, M. Cao, K.-K. R. Choo, and Z. Qin, “DeepKeyGen: A Deep Learning-based Stream Cipher Generator for Medical Image Encryption and Decryption,” Dec. 21, 2020, arXiv: arXiv:2012.11097. doi: 10.48550/arXiv.2012.11097.
[23] V. Desai, R. Patil, and D. Rao, “Using Layer Recurrent Neural Network to Generate Pseudo Random Number Sequences,” vol. 9, no. 2, 2012.
[24] V. Pachghare, Cryptography and information security. PHI Learning Pvt. Lt